

00000000000069
20000000000000

5522A Multi-Product Calibrator
 Extended specifications

General Specifications

The following tables list the 5522A specifications. All specifications are valid after allowing a warm-up period of 30 minutes, or twice the time the 5522A has been turned off. (For example, if the 5522A has been turned off for 5 minutes, the warm-up period is 10 minutes.)

All specifications apply for the temperature and time period indicated. For temperatures outside of tcal $\pm 5^{\circ} \mathrm{C}$ (tcal is the ambient temperature when the 5522A was calibrated), the temperature coefficient as stated in the General Specifications must be applied.
The specifications also assume the Calibrator is zeroed every seven days or whenever the ambient temperature changes more than $5^{\circ} \mathrm{C}$. The tightest ohms specifications are maintained with a zero cal every 12 hours within $\pm 1^{\circ} \mathrm{C}$ of use.
Also see additional specifications later in this chapter for information on extended specifications for ac voltage and current.

Warmup Time..Twice the time since last warmed up, to a maximum of 30 minutes.	
Settling Time..Less than 5 seconds for all functions and ranges except as noted.	
Standard Interfaces..IEEE-488 (GPIB), RS-232	
Temperature	
Operating	$0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
Calibration (tcal)	.. $15^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$
Storage	...-20° to $+50^{\circ} \mathrm{C}$; The DC current ranges 0 to 1.09999 A and 1.1 A to 2.99999 A are sensitive to storage temperatures above $50^{\circ} \mathrm{C}$. If the 5522A is stored above $50^{\circ} \mathrm{C}$ for greater than 30 minutes, these ranges must be re-calibrated. Otherwise, the 90 day and 1 year uncertainties of these ranges double.
Temperature Coefficient.	...Temperature coefficient for temperatures outside tcal $+5^{\circ} \mathrm{C}$ is $0.1 / \mathrm{X} /{ }^{\circ} \mathrm{C}$ of the 90 -day specification (or 1 -year, as applicable) per ${ }^{\circ} \mathrm{C}$

Relative Humidity	
Operating	. <80 \% to $30{ }^{\circ} \mathrm{C},<70 \%$ to $40{ }^{\circ} \mathrm{C},<40 \%$ to $50^{\circ} \mathrm{C}$
Storage ..	.$<95 \%$, non-condensing. After long periods of storage at hig humidity, a drying-out period (with power on) of at least on may be required.
Altitude	
Operating	.3,050 m (10,000 ft) maximum
Non-operating..	. $12,200 \mathrm{~m}(40,000 \mathrm{ft})$ maximum
Safety............	.Complies with EN/IEC 61010-1:2001, CAN/CSA-C22.2 No. 61010-1-04, ANSI/UL 61010-1:2004;

Output Terminal Electrical Overload Protection...Provides reverse-power protection, immediate output disconnection, and/or fuse protection on the output terminals for all functions. This protection is for applied external voltages up to $\pm 300 \mathrm{~V}$ peak.
Analog Low Isolation.. 20 V normal operation, 400 V peak transient
EMC ...Complies with EN/IEC 61326-1:2006, EN/IEC 61326-2-1:2006 for controlled EM environments under the following conditions. If used in areas with Electromagnetic fields of 1 to $3 \mathrm{~V} / \mathrm{m}$ from $0.08-1 \mathrm{GHz}$, resistance outputs have a floor adder of 0.508Ω Performance not specified above $3 \mathrm{~V} / \mathrm{m}$. This instrument may be susceptible to electrostatic discharge (ESD) to the binding posts. Good static awareness practices should be followed when handling this and other pieces of electronic equipment. Additionally this instrument may be susceptible to electrical fast transients on the mains terminals. If any disturbances in operation are observed, it is recommended that the rear panel chassis ground terminal be connected to a known good earth ground with a low inductance ground strap. Note that a mains power outlet while providing a suitable ground for protection against electric shock hazard may not provide an adequate ground to properly drain away conducted rf disturbances and may in fact be the source of the disturbance. This instrument was certified for EMC performance with data I/O cables not in excess of 3 m .

Line Power	Line Voltage (selectable): $100 \mathrm{~V}, 120 \mathrm{~V}, 220 \mathrm{~V}, 240 \mathrm{~V}$
	Line Frequency: 47 Hz to 63 Hz
	Line Voltage Variation: ± 10 \% about line voltage setting
	For optimal performance at full dual outputs (e.g. $1000 \mathrm{~V}, 20 \mathrm{~A}$) choose a ling voltage setting that is $\pm 7.5 \%$ from nominal.
Power Consumption.	600 VA

$.17 .8 \mathrm{~cm} \times 43.2 \mathrm{~cm} \times 47.3 \mathrm{~cm}$ (7 in x $17 \mathrm{in} \times 18.6 \mathrm{in})$ Standard rack width and rack increment, plus 1.5 cm (0.6 in) for feet on bottom of unit.
Weight (without options)
$.22 \mathrm{~kg}(49 \mathrm{lb})$
Absolute Uncertainty Definition
.The 5522A specifications include stability, temperature coefficient, linearity, line and load regulation, and the traceability of the external standards used for calibration. You do not need to add anything to determine the total specification of the 5522A for the temperature range indicated.
Specification Confidence Level \qquad .99 \%

Detailed Specifications

DC Voltage

Range	Absolute Uncertainty, tcal $\pm 5^{\circ} \mathrm{C}$ $\pm(\mathrm{ppm}$ of output $+\mu \mathrm{V})$		Stability	Resolution $\mu \mathrm{V}$	Max Burden ${ }^{[1]}$
	90 days	1 year	$\begin{gathered} 24 \text { hours, } \pm 1{ }^{\circ} \mathrm{C} \\ \pm(\mathrm{ppm} \text { of output }+\mu \mathrm{V}) \end{gathered}$		
0 to 329.9999 mV	$15+1$	$20+1$	$3+1$	0.1	65Ω
0 to 3.299999 V	$9+2$	$11+2$	$2+1.5$	1	10 mA
0 to 32.99999 V	$10+20$	$12+20$	$2+15$	10	10 mA
30 to 329.9999 V	$15+150$	$18+150$	$2.5+100$	100	5 mA
100 to 1020.000 V	$15+1500$	$18+1500$	$3+300$	1000	5 mA
Auxiliary Output (dual output mode only) ${ }^{[2]}$					
0 to 329.9999 mV	$300+350$	$400+350$	$30+100$	1	5 mA
0.33 to 3.299999 V	$300+350$	$400+350$	$30+100$	10	5 mA
3.3 to 7 V	$300+350$	$400+350$	$30+100$	100	5 mA
TC Simulate and Measure in Linear $10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ and $1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ modes ${ }^{[3]}$					
0 to 329.9999 mV	$40+3$	$50+3$	$5+2$	0.1	10Ω

[1] Remote sensing is not provided. Output resistance is $<5 \mathrm{~m} \Omega$ for outputs $\geq 0.33 \mathrm{~V}$. The AUX output has an output resistance of $<1 \Omega$. TC simulation has an output impedance of $10 \Omega \pm 1 \Omega$.
[2] Two channels of dc voltage output are provided.
[3] TC simulating and measuring are not specified for operation in electromagnetic fields above $0.4 \mathrm{v} / \mathrm{m}$.

Range	Noise	
	Bandwidth 0.1 Hz to 10 Hz p-p \pm (ppm of output + floor)	Bandwidth 10 Hz to 10 kHz rms
0 to 329.9999 mV	$0+1 \mu \mathrm{~V}$	$6 \mu \mathrm{~V}$
0 to 3.299999 V	$0+10 \mu \mathrm{~V}$	$60 \mu \mathrm{~V}$
0 to 32.99999 V	$0+100 \mu \mathrm{~V}$	$600 \mu \mathrm{~V}$
30 to 329.9999 V	$10+1 \mathrm{mV}$	20 mV
100 to 1020.000 V	$10+5 \mathrm{mV}$	20 mV
Auxiliary Output (dual output mode only) ${ }^{[1]}$		
0 to 329.9999 mV	$0+5 \mu \mathrm{~V}$	$20 \mu \mathrm{~V}$
0.33 to 3.299999 V	$0+20 \mu \mathrm{~V}$	$200 \mu \mathrm{~V}$
3.3 to 7 V	$0+100 \mu \mathrm{~V}$	$1000 \mu \mathrm{~V}$
[1] Two channels of dc voltage output are provided.		

DC Current

Range	Absolute Uncertainty, tcal $\pm 5^{\circ} \mathrm{C}$ \pm (ppm of output $+\mu \mathrm{A}$)		Resolution	Max Compliance Voltage V	Max Inductive Load mH
	90 days	1 year			
0 to $329.999 \mu \mathrm{~A}$	$120+0.02$	$150+0.02$	1 nA	10	400
0 to 3.29999 mA	$80+0.05$	$100+0.05$	$0.01 \mu \mathrm{~A}$	10	
0 to 32.9999 mA	$80+0.25$	$100+0.25$	$0.1 \mu \mathrm{~A}$	7	
0 to 329.999 mA	$80+2.5$	$100+2.5$	$1 \mu \mathrm{~A}$	7	
0 to 1.09999 A	$160+40$	$200+40$	$10 \mu \mathrm{~A}$	6	
1.1 to 2.99999 A	$300+40$	$380+40$	$10 \mu \mathrm{~A}$	6	
0 to 10.9999 A (20 A Range)	$380+500$	$500+500$	$100 \mu \mathrm{~A}$	4	
11 to $20.5 \mathrm{~A}^{[1]}$	$800+750{ }^{[2]}$	$1000+750{ }^{[2]}$	$100 \mu \mathrm{~A}$	4	

[1] Duty Cycle: Currents <11 A may be provided continuously. For currents $>11 \mathrm{~A}$, see Figure 1 . The current may be provided Formula 60-T-I minutes any 60 minute period where T is the temperature in ${ }^{\circ} \mathrm{C}\left(\right.$ room temperature is about $23^{\circ} \mathrm{C}$) and I is the output current in amperes. For example, 17 A , at $23^{\circ} \mathrm{C}$ could be provided for $60-23-17=20$ minutes each hour. When the 5522A is outputting currents between 5 and 11 amps for long periods, the internal self-heating reduces the duty cycle. Under those conditions, the allowable "on" time indicated by the formula and Figure 1 is achieved only after the 5522A is outputting currents <5 A for the "off" period first.
[2] Floor specification is $1500 \mu \mathrm{~A}$ within 30 seconds of selecting operate. For operating times >30 seconds, the floor specification is $750 \mu \mathrm{~A}$.

Range	Noise	
	Bandwidth 0.1 Hz to 10 Hz p-p	Bandwidth 10 Hz to 10 kHz rms
0 to $329.999 \mu \mathrm{~A}$	2 nA	20 nA
0 to 3.29999 mA	20 nA	200 nA
0 to 32.9999 mA	200 nA	$2.0 \mu \mathrm{~A}$
0 to 329.999 mA	2000 nA	$20 \mu \mathrm{~A}$
0 to 2.99999 A	$20 \mu \mathrm{~A}$	1 mA
0 to 20.5 A	$200 \mu \mathrm{~A}$	10 mA

Figure 1. Allowable Duration of Current >11 A

Resistance

Range ${ }^{[1]}$	Absolute Uncertainty, tcal $\pm 5^{\circ} \mathrm{C} \pm\left(\mathrm{ppm}\right.$ of output +floor) ${ }^{[2]}$				Resolution Ω	Allowable Current ${ }^{[3]}$
	ppm of output		Floor (Ω)Time and temp since ohms zero cal			
	90 days	1 year	$12 \mathrm{hrs} \pm 1^{\circ} \mathrm{C}$	7 days $\pm 5^{\circ} \mathrm{C}$		
0 to 10.9999Ω	35	40	0.001	0.01	0.0001	1 mA to 125 mA
$\begin{aligned} & 11 \text { to } \\ & 32.9999 \Omega \end{aligned}$	25	30	0.0015	0.015	0.0001	1 mA to 125 mA
$\begin{aligned} & \hline 33 \text { to } \\ & 109.9999 \Omega \end{aligned}$	22	28	0.0014	0.015	0.0001	1 mA to 70 mA
$\begin{aligned} & \hline 110 \Omega \text { to } \\ & 329.9999 \Omega \\ & \hline \end{aligned}$	22	28	0.002	0.02	0.0001	1 mA to 40 mA
$\begin{aligned} & \hline 330 \Omega \mathrm{to} \\ & 1.099999 \mathrm{k} \Omega \\ & \hline \end{aligned}$	22	28	0.002	0.02	0.001	1 mA to 18 mA
$\begin{aligned} & 1.1 \text { to } \\ & 3.299999 \mathrm{k} \Omega \end{aligned}$	22	28	0.02	0.2	0.001	$100 \mu \mathrm{~A}$ to 5 mA
$\begin{aligned} & \hline 3.3 \text { to } \\ & 10.99999 \mathrm{k} \Omega \\ & \hline \end{aligned}$	22	28	0.02	0.1	0.01	$100 \mu \mathrm{~A}$ to 1.8 mA
$\begin{aligned} & \hline 11 \text { to } \\ & 32.99999 \mathrm{k} \Omega \\ & \hline \end{aligned}$	22	28	0.2	1	0.01	$10 \mu \mathrm{~A}$ to 0.5 mA
$\begin{aligned} & \hline 33 \text { to } \\ & 109.9999 \mathrm{k} \Omega \end{aligned}$	22	28	0.2	1	0. 1	$10 \mu \mathrm{~A}$ to 0.18 mA
$\begin{aligned} & 110 \mathrm{to} \\ & 329.99999 \mathrm{k} \Omega \end{aligned}$	25	32	2	10	0.1	$1 \mu \mathrm{~A}$ to 0.05 mA
$\begin{aligned} & 330 \mathrm{k} \Omega \text { to } \\ & 1.099999 \mathrm{M} \Omega \end{aligned}$	25	32	2	10	1	$1 \mu \mathrm{~A}$ to 0.018 mA
$\begin{aligned} & 1.1 \mathrm{to} \\ & 3.299999 \mathrm{M} \Omega \end{aligned}$	40	60	30	150	1	250 nA to $5 \mu \mathrm{~A}$
$\begin{aligned} & 3.3 \text { to } \\ & 10.99999 \mathrm{M} \Omega \end{aligned}$	110	130	50	250	10	250 nA to $1.8 \mu \mathrm{~A}$
$\begin{aligned} & 11 \text { to } \\ & 32.99999 \mathrm{M} \Omega \\ & \hline \end{aligned}$	200	250	2500	2500	10	25 nA to 500 nA
$\begin{aligned} & 33 \text { to } \\ & 109.9999 \mathrm{M} \Omega \end{aligned}$	400	500	3000	3000	100	25 nA to 180 nA
$\begin{aligned} & 110 \mathrm{to} \\ & 329.9999 \mathrm{M} \Omega \end{aligned}$	2500	3000	100000	100000	1000	2.5 nA to 50 nA
$\begin{aligned} & 330 \mathrm{to} \\ & 1100 \mathrm{M} \Omega \end{aligned}$	12000	15000	500000	500000	10000	1 nA to 13 nA

[1] Continuously variable from 0Ω to $1.1 \mathrm{G} \Omega$.
[2] Applies for 4-WIRE compensation only. For 2-WIRE and 2-WIRE COMP, add an additional amount to the floor specification as calculated by: ($5 \mu \mathrm{~V}$ divided by the stimulus current in amps). For example, in 2 -WIRE mode, at $1 \mathrm{k} \Omega$ the floor specification within 12 hours of an ohms zero cal for a measurement current of 1 mA is: $0.002 \Omega+(5 \mu \mathrm{~V} / 1 \mathrm{~mA})=(0.002+0.005) \Omega=0.007 \Omega$.
[3] For currents lower than shown, the floor adder increases by Floor(new) = Floor(old) x Imin/Iactual. For example, a $50 \mu \mathrm{~A}$ stimulus measuring 100Ω has a floor specification of: $0.0014 \Omega \times 1 \mathrm{~mA} / 50 \mu \mathrm{~A}=0.028 \Omega$ assuming an ohms zero calibration within 12 hours.

AC Voltage (Sine Wave)

Range	Frequency	$\begin{aligned} & \text { Absolute Uncertainty, } \\ & \text { tcal } \pm 5^{\circ} \mathrm{C} \\ & \pm(\mathrm{ppm} \text { of output }+\mu \mathrm{V}) \end{aligned}$		Resolution	Max Burden	Max Distortion and Noise 10 Hz to 5 MHz Bandwidth $\pm(\%$ of output + floor)
		90 days	1 year			
Normal Output						
$\begin{aligned} & 1.0 \mathrm{mV} \text { to } \\ & 32.999 \mathrm{mV} \end{aligned}$	10 Hz to 45 Hz	$600+6$	$800+6$	$1 \mu \mathrm{~V}$	65Ω	$0.15+90 \mu \mathrm{~V}$
	45 Hz to 10 kHz	$120+6$	$150+6$			$0.035+90 \mu \mathrm{~V}$
	10 kHz to 20 kHz	$160+6$	$200+6$			$0.06+90 \mu \mathrm{~V}$
	20 kHz to 50 kHz	$800+6$	$1000+6$			$0.15+90 \mu \mathrm{~V}$
	50 kHz to 100 kHz	$3000+12$	$3500+12$			$0.25+90 \mu \mathrm{~V}$
	100 kHz to 500 kHz	$6000+50$	$8000+50$			$0.3+90 \mu \mathrm{~V}^{[1]}$
$\begin{aligned} & 33 \mathrm{mV} \text { to } \\ & 329.999 \mathrm{mV} \end{aligned}$	10 Hz to 45 Hz	$250+8$	$300+8$	$1 \mu \mathrm{~V}$	65Ω	$0.15+90 \mu \mathrm{~V}$
	45 Hz to 10 kHz	$140+8$	$145+8$			$0.035+90 \mu \mathrm{~V}$
	10 kHz to 20 kHz	$150+8$	$160+8$			$0.06+90 \mu \mathrm{~V}$
	20 kHz to 50 kHz	$300+8$	$350+8$			$0.15+90 \mu \mathrm{~V}$
	50 kHz to 100 kHz	$600+32$	$800+32$			$0.20+90 \mu \mathrm{~V}$
	100 kHz to 500 kHz	$1600+70$	$2000+70$			$0.20+90 \mu \mathrm{~V}^{[1]}$
$\begin{aligned} & 0.33 \mathrm{~V} \text { to } \\ & 3.29999 \mathrm{~V} \end{aligned}$	10 Hz to 45 Hz	$250+50$	$300+50$	$10 \mu \mathrm{~V}$	10 mA	$0.15+200 \mu \mathrm{~V}$
	45 Hz to 10 kHz	$140+60$	$150+60$			$0.035+200 \mu \mathrm{~V}$
	10 kHz to 20 kHz	$160+60$	$190+60$			$0.06+200 \mu \mathrm{~V}$
	20 kHz to 50 kHz	$250+50$	$300+50$			$0.15+200 \mu \mathrm{~V}$
	50 kHz to 100 kHz	$550+125$	$700+125$			$0.20+200 \mu \mathrm{~V}$
	100 kHz to 500 kHz	$2000+600$	$2400+600$			$0.20+200 \mu \mathrm{~V}^{[1]}$
$\begin{aligned} & 3.3 \mathrm{~V} \text { to } \\ & 32.9999 \mathrm{~V} \end{aligned}$	10 Hz to 45 Hz	$250+650$	$300+650$	$100 \mu \mathrm{~V}$	10 mA	$0.15+2 \mathrm{mV}$
	45 Hz to 10 kHz	$125+600$	$150+600$			$0.035+2 \mathrm{mV}$
	10 kHz to 20 kHz	$220+600$	$240+600$			$0.08+2 \mathrm{mV}$
	20 kHz to 50 kHz	$300+600$	$350+600$			$0.2+2 \mathrm{mV}$
	50 kHz to 100 kHz	$750+1600$	$900+1600$			$0.5+2 \mathrm{mV}$
$\begin{aligned} & 33 \mathrm{~V} \text { to } \\ & 329.999 \mathrm{~V} \end{aligned}$	45 Hz to 1 kHz	$150+2000$	$190+2000$	1 mV	5 mA , except 20 mA for 45 Hz to 65 Hz	$0.15+10 \mathrm{mV}$
	1 kHz to 10 kHz	$160+6000$	$200+6000$			$0.05+10 \mathrm{mV}$
	10 kHz to 20 kHz	$220+6000$	$250+6000$			$0.6+10 \mathrm{mV}$
	20 kHz to 50 kHz	$240+6000$	$300+6000$			$0.8+10 \mathrm{mV}$
	50 kHz to 100 kHz	$1600+50000$	$2000+50000$			$1.0+10 \mathrm{mV}$
$\begin{aligned} & 330 \mathrm{~V} \text { to } \\ & 1020 \mathrm{~V} \end{aligned}$	45 Hz to 1 kHz	$250+10000$	$300+10000$	10 mV	2 mA,except 6 mAfor 45 Hz to65 Hz	$0.15+30 \mathrm{mV}$
	1 kHz to 5 kHz	$200+10000$	$250+10000$			$0.07+30 \mathrm{mV}$
	5 kHz to 10 kHz	$250+10000$	$300+10000$			$0.07+30 \mathrm{mV}$
[1] Max Distortion for 100 kHz to 200 kHz . For 200 kHz to 500 kHz , the maximum distortion is 0.9% of output + floor as shown. Note Remote sensing is not provided. Output resistance is $<5 \mathrm{~m} \Omega$ for outputs $\geq 0.33 \mathrm{~V}$. The AUX output resistance is $<1 \Omega$. The maximum load capacitance is 500 pF , subject to the maximum burden current limits						

AC Voltage (Sine Wave)(cont.)

Range	Frequency ${ }^{[1]}$	$\begin{gathered} \text { Absolute Uncertainty, } \\ \text { tcal } \pm 5^{\circ} \mathrm{C} \\ \pm(\% \text { of output }+\mu \mathrm{V}) \\ \hline \end{gathered}$		Resolution	Max Burden	Max Distortion and Noise 10 Hz to 5 MHz Bandwidth $\pm(\%$ of output + floor)
		90 days	1 year			
AUX Output						
$\begin{aligned} & 10 \mathrm{mV} \text { to } \\ & 329.999 \mathrm{mV} \end{aligned}$	10 Hz to 20 Hz	$0.15+370$	$0.2+370$	$1 \mu \mathrm{~V}$	5 mA	$0.2+200 \mu \mathrm{~V}$
	20 Hz to 45 Hz	$0.08+370$	$0.1+370$			$0.06+200 \mu \mathrm{~V}$
	45 Hz to 1 kHz	$0.08+370$	$0.1+370$			$0.08+200 \mu \mathrm{~V}$
	1 kHz to 5 kHz	$0.15+450$	$0.2+450$			$0.3+200 \mu \mathrm{~V}$
	5 kHz to 10 kHz	$0.3+450$	$0.4+450$			$0.6+200 \mu \mathrm{~V}$
	10 kHz to 30 kHz	$4.0+900$	$5.0+900$			$1+200 \mu \mathrm{~V}$
$\begin{aligned} & 0.33 \mathrm{~V} \text { to } \\ & 3.29999 \mathrm{~V} \end{aligned}$	10 Hz to 20 Hz	$0.15+450$	$0.2+450$	$10 \mu \mathrm{~V}$	5 mA	$0.2+200 \mu \mathrm{~V}$
	20 Hz to 45 Hz	$0.08+450$	$0.1+450$			$0.06+200 \mu \mathrm{~V}$
	45 Hz to 1 kHz	$0.07+450$	$0.09+450$			$0.08+200 \mu \mathrm{~V}$
	1 kHz to 5 kHz	$0.15+1400$	$0.2+1400$			$0.3+200 \mu \mathrm{~V}$
	5 kHz to 10 kHz	$0.3+1400$	$0.4+1400$			$0.6+200 \mu \mathrm{~V}$
	10 kHz to 30 kHz	$4.0+2800$	$5.0+2800$			$1+200 \mu \mathrm{~V}$
3.3 V to 5 V	10 Hz to 20 Hz	$0.15+450$	$0.2+450$	$100 \mu \mathrm{~V}$	5 mA	$0.2+200 \mu \mathrm{~V}$
	20 Hz to 45 Hz	$0.08+450$	$0.1+450$			$0.06+200 \mu \mathrm{~V}$
	45 Hz to 1 kHz	$0.07+450$	$0.09+450$			$0.08+200 \mu \mathrm{~V}$
	1 kHz to 5 kHz	$0.15+1400$	$0.2+1400$			$0.3++200 \mu \mathrm{~V}$
	5 kHz to 10 kHz	$0.3+1400$	$0.4+1400$			$0.6+200 \mu \mathrm{~V}$
[1] There are two channels of voltage output. The maximum frequency of the dual output is 30 kHz . Note						
Remote sensing is not provided. Output resistance is $<5 \mathrm{~m} \Omega$ for outputs $\geq 0.33 \mathrm{~V}$. The AUX output resistance is $<1 \Omega$. The maximum load capacitance is 500 pF , subject to the maximum burden current limits						

AC Current (Sine Wave)

Range	Frequency	$\begin{gathered} \text { Absolute Uncertainty, } \\ \text { tcal } \pm 5{ }^{\circ} \mathrm{C} \\ \pm(\% \text { of output }+\mu \mathrm{A}) \end{gathered}$		Compliance adder $\pm(\mu \mathrm{A} / \mathrm{V})$	$\begin{aligned} & \text { Max Distortion \& } \\ & \text { Noise } 10 \mathrm{~Hz} \text { to } \\ & 100 \mathrm{kHz} \mathrm{BW} \\ & \pm(\% \text { of output }+ \\ & \text { floor }) \end{aligned}$	Max Inductive Load $\mu \mathrm{H}$
		90 days	1 year			
LCOMP Off						
$\begin{gathered} 29.00 \text { to } \\ 329.99 \mu \mathrm{~A} \end{gathered}$	10 to 20 Hz	$0.16+0.1$	$0.2+0.1$	0.05	$0.15+0.5 \mu \mathrm{~A}$	200
	20 to 45 Hz	$0.12+0.1$	$0.15+0.1$	0.05	$0.1+0.5 \mu \mathrm{~A}$	
	45 Hz to 1 kHz	$0.1+0.1$	$0.125+0.1$	0.05	$0.05+0.5 \mu \mathrm{~A}$	
	1 to 5 kHz	$0.25+0.15$	$0.3+0.15$	1.5	$0.5+0.5 \mu \mathrm{~A}$	
	5 to 10 kHz	$0.6+0.2$	$0.8+0.2$	1.5	$1.0+0.5 \mu \mathrm{~A}$	
	10 to 30 kHz	$1.2+0.4$	$1.6+0.4$	10	$1.2+0.5 \mu \mathrm{~A}$	
$\begin{gathered} 0.33 \text { to } \\ 3.29999 \mathrm{~mA} \end{gathered}$	10 to 20 Hz	$0.16+0.15$	$0.2+0.15$	0.05	$0.15+1.5 \mu \mathrm{~A}$	200
	20 to 45 Hz	$0.1+0.15$	$0.125+0.15$	0.05	$0.06+1.5 \mu \mathrm{~A}$	
	45 Hz to 1 kHz	$0.08+0.15$	$0.1+0.15$	0.05	$0.02+1.5 \mu \mathrm{~A}$	
	1 to 5 kHz	$0.16+0.2$	$0.2+0.2$	1.5	$0.5+1.5 \mu \mathrm{~A}$	
	5 to 10 kHz	$0.4+0.3$	$0.5+0.3$	1.5	$1.0+1.5 \mu \mathrm{~A}$	
	10 to 30 kHz	$0.8+0.6$	$1.0+0.6$	10	$1.2+0.5 \mu \mathrm{~A}$	
$\begin{gathered} 3.3 \text { to } \\ 32.9999 \mathrm{~mA} \end{gathered}$	10 to 20 Hz	$0.15+2$	$0.18+2$	0.05	$0.15+5 \mu \mathrm{~A}$	50
	20 to 45 Hz	$0.075+2$	$0.09+2$	0.05	$0.05+5 \mu \mathrm{~A}$	
	45 Hz to 1 kHz	$0.035+2$	$0.04+2$	0.05	$0.07+5 \mu \mathrm{~A}$	
	1 to 5 kHz	$0.065+2$	$0.08+2$	1.5	$0.3+5 \mu \mathrm{~A}$	
	5 to 10 kHz	$0.16+3$	$0.2+3$	1.5	$0.7+5 \mu \mathrm{~A}$	
	10 to 30 kHz	$0.32+4$	$0.4+4$	10	$1.0+0.5 \mu \mathrm{~A}$	
$\begin{gathered} 33 \text { to } \\ 329.999 \mathrm{~mA} \end{gathered}$	10 to 20 Hz	$0.15+20$	$0.18+20$	0.05	$0.15+50 \mu \mathrm{~A}$	50
	20 to 45 Hz	$0.075+20$	$0.09+20$	0.05	$0.05+50 \mu \mathrm{~A}$	
	45 Hz to 1 kHz	$0.035+20$	$0.04+20$	0.05	$0.02+50 \mu \mathrm{~A}$	
	1 to 5 kHz	$0.08+50$	$0.10+50$	1.5	$0.03+50 \mu \mathrm{~A}$	
	5 to 10 kHz	$0.16+100$	$0.2+100$	1.5	$0.1+50 \mu \mathrm{~A}$	
	10 to 30 kHz	$0.32+200$	$0.4+200$	10	$0.6+50 \mu \mathrm{~A}$	
$\begin{gathered} 0.33 \mathrm{to} \\ 1.09999 \text { A } \end{gathered}$	10 to 45 Hz	$0.15+100$	$0.18+100$		$0.2+500 \mu \mathrm{~A}$	2.5
	45 Hz to 1 kHz	$0.036+100$	$0.05+100$		$0.07+500 \mu \mathrm{~A}$	
	1 to 5 kHz	$0.5+1000$	$0.6+1000$	[2]	$1+500 \mu \mathrm{~A}$	
	5 to 10 kHz	$2.0+5000$	$2.5+5000$	[3]	$2+500 \mu \mathrm{~A}$	
$\begin{gathered} 1.1 \mathrm{to} \\ 2.99999 \text { A } \end{gathered}$	10 to 45 Hz	$0.15+100$	$0.18+100$		$0.2+500 \mu \mathrm{~A}$	2.5
	45 Hz to 1 kHz	$0.05+100$	$0.06+100$		$0.07+500 \mu \mathrm{~A}$	
	1 to 5 kHz	$0.5+1000$	$0.6+1000$	[2]	$1+500 \mu \mathrm{~A}$	
	5 to 10 kHz	$2.0+5000$	$2.5+5000$	[3]	$2+500 \mu \mathrm{~A}$	
$\begin{gathered} 3 \text { to } \\ 10.9999 \mathrm{~A} \end{gathered}$	45 to 100 Hz	$0.05+2000$	$0.06+2000$		$0.2+3 \mathrm{~mA}$	1
	100 Hz to 1 kHz	$0.08+2000$	$0.10+2000$		$0.1+3 \mathrm{~mA}$	
	1 to 5 kHz	$2.5+2000$	$3.0+2000$		$0.8+3 \mathrm{~mA}$	
$\begin{gathered} 11 \text { to } \\ 20.5 \mathrm{~A}^{[1]} \end{gathered}$	45 to 100 Hz	$0.1+5000$	$0.12+5000$		$0.2+3 \mathrm{~mA}$	1
	100 Hz to 1 kHz	$0.13+5000$	$0.15+5000$		$0.1+3 \mathrm{~mA}$	
	1 to 5 kHz	$2.5+5000$	$3.0+5000$		$0.8+3 \mathrm{~mA}$	

[1] Duty Cycle: Currents <11 A may be provided continuously. For currents $>11 \mathrm{~A}$, see Figure 1. The current may be provided 60-T-I minutes any 60 minute period where T is the temperature in ${ }^{\circ} \mathrm{C}$ (room temperature is about $23^{\circ} \mathrm{C}$) and I is the output current in Amps. For example, 17 A , at $23^{\circ} \mathrm{C}$ could be provided for $60-23-17=20$ minutes each hour. When the 5520A is outputting currents between 5 and 11 amps for long periods, the internal self-heating reduces the duty cycle. Under those conditions, the allowable "on" time indicated by the formula and Figure 1 is achieved only after the 5520A is outputting currents <5 A for the "off" period first.
[2] For compliance voltages greater than 1 V , add $1 \mathrm{~mA} / \mathrm{V}$ to the floor specification from 1 to 5 kHz .
[3] For compliance voltages greater than 1 V , add $5 \mathrm{~mA} / \mathrm{V}$ to the floor specification from 5 to 10 kHz .

AC Current (Sine Wave)(cont.)

Range	Frequency	$\begin{gathered} \text { Absolute Uncertainty, } \\ \text { tcal } \pm 5^{\circ} \mathrm{C} \\ \pm(\% \text { of output }+\mu \bar{A}) \\ \hline \end{gathered}$		 Noise 10 Hz to 100 kHz BW $\pm(\%$ of output + floor $)$	Max Inductive Load $\mu \mathrm{H}$
		90 days	1 year		
LCOMP On					
$\begin{gathered} 29.00 \text { to } \\ 329.99 \mu \mathrm{~A} \end{gathered}$	10 to 100 Hz	$0.2+0.2$	$0.25+0.2$	$0.1+1.0 \mu \mathrm{~A}$	400
	100 Hz to 1 kHz	$0.5+0.5$	$0.6+0.5$	$0.05+1.0 \mu \mathrm{~A}$	
$\begin{gathered} 0.33 \text { to } \\ 3.29999 \mathrm{~mA} \end{gathered}$	10 to 100 Hz	$0.2+0.3$	$0.25+0.3$	$0.15+1.5 \mu \mathrm{~A}$	
	100 Hz to 1 kHz	$0.5+0.8$	$0.6+0.8$	$0.06+1.5 \mu \mathrm{~A}$	
$\begin{gathered} 3.3 \mathrm{to} \\ 32.9999 \mathrm{~mA} \end{gathered}$	10 to 100 Hz	$0.07+4$	$0.08+4$	$0.15+5 \mu \mathrm{~A}$	
	100 Hz to 1 kHz	$0.18+10$	$0.2+10$	$0.05+5 \mu \mathrm{~A}$	
$\begin{gathered} 33 \mathrm{to} \\ 329.999 \mathrm{~mA} \end{gathered}$	10 to 100 Hz	$0.07+40$	$0.08+40$	$0.15+50 \mu \mathrm{~A}$	
	100 Hz to 1 kHz	$0.18+100$	$0.2+100$	$0.05+50 \mu \mathrm{~A}$	
$\begin{gathered} 0.33 \text { to } \\ 2.99999 \mathrm{~A} \end{gathered}$	10 to 100 Hz	$0.1+200$	$0.12+200$	$0.2+500 \mu \mathrm{~A}$	
	100 to 440 Hz	$0.25+1000$	$0.3+1000$	$0.25+500 \mu \mathrm{~A}$	
3 to $20.5 \mathrm{~A}^{[1]}$	45 to 100 Hz	$0.1+2000{ }^{[2]}$	$0.12+2000{ }^{[2]}$	$0.1+0 \mu \mathrm{~A}$	$400{ }^{[4]}$
	100 to 440 Hz	$0.8+5000^{[3]}$	$1.0+5000{ }^{[3]}$	$0.5+0 \mu \mathrm{~A}$	

[1] Duty Cycle: Currents <11 A may be provided continuously. For currents $>11 \mathrm{~A}$, see Figure 1 . The current may be provided Formula $60-\mathrm{T}-\mathrm{I}$ minutes any 60 minute period where T is the temperature in ${ }^{\circ} \mathrm{C}$ (room temperature is about $23^{\circ} \mathrm{C}$) and I is the output current in Amps. For example, 17 A , at $23^{\circ} \mathrm{C}$ could be provided for $60-23-17=20$ minutes each hour. When the 5522A is outputting currents between 5 and 11 amps for long periods, the internal self-heating reduces the duty cycle. Under those conditions, the allowable "on" time indicated by the formula and Figure 1 is achieved only after the 5522A is outputting currents <5 A for the "off" period first.
[2] For currents >11 A, Floor specification is $4000 \mu \mathrm{~A}$ within 30 seconds of selecting operate. For operating times >30 seconds, the floor specification is $2000 \mu \mathrm{~A}$.
[3] For currents >11 A, Floor specification is $10000 \mu A$ within 30 seconds of selecting operate. For operating times >30 seconds, the floor specification is $5000 \mu \mathrm{~A}$.
[4] Subject to compliance voltages limits.

Range	Resolution $\mu \mathrm{A}$	Max Compliance Voltage V rms ${ }^{[1]}$
0.029 to 0.32999 mA	0.01	7
0.33 to 3.29999 mA	0.01	7
3.3 to 32.9999 mA	0.1	5
33 to 329.999 mA	1	5
0.33 to 2.99999 A	10	4
3 to 20.5 A	100	3
$[1] \quad$ Subject to specification adder for compliance voltages greater than $1 \mathrm{~V} \mathrm{rms}$.		

Capacitance

Range	$\begin{gathered} \text { Absolute Uncertainty, } \\ \text { tcal } \pm 5^{\circ} \mathrm{C} \\ \pm(\% \text { of output + floor })^{[1][2]} \end{gathered}$		Resolution	Allowed Frequency or Charge-Discharge Rate		
	90 days	1 year		Min and Max to Meet Specification	Typical Max for < 0.5 \% Error	Typical Max for <1 \% Error
$\begin{aligned} & 220.0 \mathrm{to} \\ & 399.9 \mathrm{pF} \end{aligned}$	$0.38+10 \mathrm{pF}$	$0.5+10 \mathrm{pF}$	0.1 pF	10 Hz to 10 kHz	20 kHz	40 kHz
$\begin{gathered} 0.4 \text { to } \\ 1.0999 \mathrm{nF} \\ \hline \end{gathered}$	$0.38+0.01 \mathrm{nF}$	$0.5+0.01 \mathrm{nF}$	0.1 pF	10 Hz to 10 kHz	30 kHz	50 kHz
$\begin{gathered} 1.1 \mathrm{to} \\ 3.2999 \mathrm{nF} \\ \hline \end{gathered}$	$0.38+0.01 \mathrm{nF}$	$0.5+0.01 \mathrm{nF}$	0.1 pF	10 Hz to 3 kHz	30 kHz	50 kHz
$\begin{gathered} 3.3 \mathrm{to} \\ 10.9999 \mathrm{nF} \end{gathered}$	$0.19+0.01 \mathrm{nF}$	$0.25+0.01 \mathrm{nF}$	0.1 pF	10 Hz to 1 kHz	20 kHz	25 kHz
$\begin{gathered} 11 \mathrm{to} \\ 32.9999 \mathrm{nF} \end{gathered}$	$0.19+0.1 \mathrm{nF}$	$0.25+0.1 \mathrm{nF}$	0.1 pF	10 Hz to 1 kHz	8 kHz	10 kHz
$\begin{array}{r} 33 \mathrm{to} \\ 109.999 \mathrm{nF} \end{array}$	$0.19+0.1 \mathrm{nF}$	$0.25+0.1 \mathrm{nF}$	1 pF	10 Hz to 1 kHz	4 kHz	6 kHz
$\begin{gathered} 110 \mathrm{to} \\ 329.999 \mathrm{nF} \\ \hline \end{gathered}$	$0.19+0.3 \mathrm{nF}$	$0.25+0.3 \mathrm{nF}$	1 pF	10 Hz to 1 kHz	2.5 kHz	3.5 kHz
$\begin{gathered} 0.33 \text { to } \\ 1.09999 \mu \mathrm{~F} \\ \hline \end{gathered}$	$0.19+1 \mathrm{nF}$	$0.25+1 \mathrm{nF}$	10 pF	10 to 600 Hz	1.5 kHz	2 kHz
$\begin{gathered} 1.1 \mathrm{to} \\ 3.29999 \mathrm{~F} \\ \hline \end{gathered}$	$0.19+3 \mathrm{nF}$	$0.25+3 \mathrm{nF}$	10 pF	10 to 300 Hz	800 Hz	1 kHz
$\begin{gathered} 3.3 \mathrm{to} \\ 10.9999 \mu \mathrm{~F} \\ \hline \end{gathered}$	$0.19+10 \mathrm{nF}$	$0.25+10 \mathrm{nF}$	100 pF	10 to 150 Hz	450 Hz	650 Hz
$\begin{array}{r} 11 \mathrm{to} \\ 32.9999 \mu \mathrm{~F} \\ \hline \end{array}$	$0.30+30 \mathrm{nF}$	$0.40+30 \mathrm{nF}$	100 pF	10 to 120 Hz	250 Hz	350 Hz
$\begin{gathered} 33 \mathrm{to} \\ 109.999 \mu \mathrm{~F} \\ \hline \end{gathered}$	$0.34+100 \mathrm{nF}$	$0.45+100 \mathrm{nF}$	1 nF	10 to 80 Hz	150 Hz	200 Hz
$\begin{gathered} 110 \text { to } \\ 329.999 \mu \mathrm{~F} \end{gathered}$	$0.34+300 \mathrm{nF}$	$0.45+300 \mathrm{nF}$	1 nF	0 to 50 Hz	80 Hz	120 Hz
$\begin{gathered} 0.33 \mathrm{to} \\ 1.09999 \mathrm{mF} \\ \hline \end{gathered}$	$0.34+1 \mu \mathrm{~F}$	$0.45+1 \mu \mathrm{~F}$	10 nF	0 to 20 Hz	45 Hz	65 Hz
$\begin{gathered} 1.1 \mathrm{to} \\ 3.29999 \mathrm{mF} \end{gathered}$	$0.34+3 \mu \mathrm{~F}$	$0.45+3 \mu \mathrm{~F}$	10 nF	0 to 6 Hz	30 Hz	40 Hz
$\begin{gathered} 3.3 \mathrm{to} \\ 10.9999 \mathrm{mF} \end{gathered}$	$0.34+10 \mu \mathrm{~F}$	$0.45+10 \mu \mathrm{~F}$	100 nF	0 to 2 Hz	15 Hz	20 Hz
$\begin{array}{r} 11 \mathrm{to} \\ 32.9999 \mathrm{mF} \\ \hline \end{array}$	$0.7+30 \mu \mathrm{~F}$	$0.75+30 \mu \mathrm{~F}$	100 nF	0 to 0.6 Hz	7.5 Hz	10 Hz
$\begin{gathered} 33 \mathrm{to} \\ 110 \mathrm{mF} \\ \hline \end{gathered}$	$1.0+100 \mu \mathrm{~F}$	$1.1+100 \mu \mathrm{~F}$	$10 \mu \mathrm{~F}$	0 to 0.2 Hz	3 Hz	5 Hz
[1] The output is continuously variable from 220 pF to 110 mF . [2] Specifications apply to both dc charge/discharge capacitance meters and ac RCL meters. The maximum allowable peak voltage is 3 V . The maximum allowable peak current is 150 mA , with an rms limitation of 30 mA below $1.1 \mu \mathrm{~F}$ and 100 mA for $1.1 \mu \mathrm{~F}$ and above. [3] The maximum lead resistance for no additional error in 2-wire COMP mode is 10Ω.						

Temperature Calibration (Thermocouple)

$\text { Type }{ }^{[1]}$	Range ${ }^{\circ} \mathbf{C}^{[2}$	```Absolute Uncertainty Source/Measure tcal }\pm \pm}\mp@subsup{}{}{\circ}\mp@subsup{\mathbf{C}}{}{[3]```		$\text { Type }^{[1]}$	Range ${ }^{\circ} \mathbf{C}^{[2}$	```Absolute Uncertainty Source/Measure tcal }\pm \pm}\mp@subsup{}{}{\circ}\mp@subsup{C}{}{[3]```				
		90 days	1 year			90 days	1 year			
B	600 to 800	0.42	0.44	L	-200 to -100	0.37	0.37			
	800 to 1000	0.34	0.34		-100 to 800	0.26	0.26			
	1000 to 1550	0.30	0.30		800 to 900	0.17	0.17			
	1550 to 1820	0.26	0.33	N	-200 to -100	0.30	0.40			
C	0 to 150	0.23	0.30		-100 to -25	0.17	0.22			
	150 to 650	0.19	0.26		-25 to 120	0.15	0.19			
	650 to 1000	0.23	0.31		120 to 410	0.14	0.18			
	1000 to 1800	0.38	0.50		410 to 1300	0.21	0.27			
	1800 to 2316	0.63	0.84	R	0 to 250	0.48	0.57			
E	-250 to -100	0.38	0.50		250 to 400	0.28	0.35			
	-100 to -25	0.12	0.16		400 to 1000	0.26	0.33			
	-25 to 350	0.10	0.14		1000 to 1767	0.30	0.40			
	350 to 650	0.12	0.16	S	0 to 250	0.47	0.47			
	650 to 1000	0.16	0.21		250 to 1000	0.30	0.36			
J	-210 to -100	0.20	0.27		1000 to 1400	0.28	0.37			
	-100 to -30	0.12	0.16		1400 to 1767	0.34	0.46			
	-30 to 150	0.10	0.14	T	-250 to -150	0.48	0.63			
	150 to 760	0.13	0.17		-150 to 0	0.18	0.24			
	760 to 1200	0.18	0.23		0 to 120	0.12	0.16			
K	-200 to -100	0.25	0.33		120 to 400	0.10	0.14			
	-100 to -25	0.14	0.18	U	-200 to 0	0.56	0.56			
	-25 to 120	0.12	0.16		0 to 600	0.27	0.27			
	120 to 1000	0.19	0.26							
	1000 to 1372	0.30	0.40							
[1] Temperature standard ITS-90 or IPTS-68 is selectable. TC simulating and measuring are not specified for operation in electromagnetic fields above $0.4 \mathrm{~V} / \mathrm{m}$. [2] Resolution is $0.01{ }^{\circ} \mathrm{C}$ [3] Does not include thermocouple error										

Calibration

Temperature Calibration (RTD)

[^0]
DC Power Specification Summary

AC Power (45 Hz to 65 Hz) Specification Summary, PF=1

	Voltage Range	Current Range			
		$\begin{gathered} 3.3 \mathrm{to} \\ 8.999 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 9 \text { to } \\ 32.999 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 33 \mathrm{to} \\ 89.99 \mathrm{~mA} \\ \hline \end{gathered}$	90 to 329.99 mA
		Absolute Uncertainty, tcal $\pm 5^{\circ} \mathrm{C}, \pm\left(\%\right.$ of watts output) ${ }^{[1]}$			
90 days	33 to 329.999 mV	0.13	0.09	0.13	0.09
	330 mV to 1020 V	0.11	0.07	0.11	0.07
1 year	33 to 329.999 mV	0.14	0.10	0.14	0.10
	330 mV to 1020 V	0.12	0.08	0.12	0.08
	Voltage Range	Current Range ${ }^{[2]}$			
		$\begin{gathered} 0.33 \text { to } \\ 0.8999 \mathrm{~A} \end{gathered}$	$\begin{gathered} 0.9 \text { to } \\ 2.1999 \mathrm{~A} \end{gathered}$	$\begin{gathered} 2.2 \text { to } \\ 4.4999 \mathrm{~A} \end{gathered}$	$\begin{aligned} & \hline 4.5 \text { to } \\ & 20.5 \mathrm{~A} \end{aligned}$
		Absolute Uncertainty, tcal $\pm 5{ }^{\circ} \mathrm{C}, \pm\left(\%\right.$ of watts output) ${ }^{[1]}$			
90 days	33 to 329.999 mV	0.12	0.10	0.12	0.10
	330 mV to 1020 V	0.10	0.08	0.11	0.09
1 year	33 to 329.999 mV	0.13	0.11	0.13	0.11
	330 mV to 1020 V	0.11	0.09	0.12	0.10

[1] To determine ac power uncertainty with more precision, see the individual "AC Voltage Specifications" and "AC Current Specifications" and "Calculating Power Uncertainty."
[2] Add 0.02% unless a settling time of 30 seconds is allowed for output currents $>10 \mathrm{~A}$ or for currents on the highest two current ranges within 30 seconds of an output current $>10 \mathrm{~A}$.

Power and Dual Output Limit Specifications

Frequency	Voltages (NORMAL)	Currents	Voltages (AUX)	Power Factor (PF)
dc	0 to $\pm 1020 \mathrm{~V}$	0 to $\pm 20.5 \mathrm{~A}$	0 to $\pm 7 \mathrm{~V}$	-
10 to 45 Hz	33 mV to 32.9999 V	3.3 mA to 2.99999 A	10 mV to 5 V	0 to 1
45 to 65 Hz	33 mV to 1020 V	3.3 mA to 20.5 A	10 mV to 5 V	0 to 1
65 to 500 Hz	330 mV to 1020 V	33 mA to 2.99999 A	100 mV to 5 V	0 to 1
65 to 500 Hz	3.3 to 1020 V	33 mA to 20.5 A	100 mV to 5 V	0 to 1
500 Hz to 1 kHz	330 mV to 1020 V	33 mA to 20.5 A	100 mV to 5 V	0 to 1
1 to 5 kHz	3.3 to 500 V	33 mA to 2.99999 A	100 mV to 5 V	0 to 1
5 to 10 kHz	3.3 to 250 V	33 to 329.99 mA	1 to 5 V	0 to 1
10 to 30 kHz	3.3 V to 250 V	33 mA to 329.99 mA	1 V to 3.29999 V	0 to 1
Notes The range of voltages and currents shown in "DC Voltage Specifications," "DC Current Specifications," "AC Voltage (Sine Wave)				
Specifications," and "AC Current (Sine Wave) Specifications" are available in the power and dual output modes (except minimum current for ac power is 0.33 mA). However, only those limits shown in this table are specified. See "Calculating Power Uncertainty" to determine the uncertainty at these points. The phase adjustment range for dual ac outputs is $0{ }^{\circ}$ to $\pm 179.99^{\circ}$. The phase resolution for dual ac outputs is 0.01 degree.				

Phase

1-Year Absolute Uncertainty, tcal $\pm 5^{\circ} \mathrm{C},\left(\Delta \Phi^{\circ}\right)$					
10 to	65 to	500 Hz to	1 to	10 to	
65 Hz	500 Hz	1 kHz	5^{kHz}	$1 \mathrm{kHz}^{\circ}$	30 kHz
0.10°	0.25°	0.5°	2.5°	5°	10°
Note					
See Power and Dual Output Limit Specifications for applicable outputs.					

Phase (Φ) Watts	Phase (Φ)VARs	PF	Power Uncertainty Adder due to Phase Error					
			$\begin{aligned} & 10 \mathrm{to} \\ & 65 \mathrm{~Hz} \end{aligned}$	$\begin{array}{r} 65 \mathrm{to} \\ 500 \mathrm{~Hz} \end{array}$	$\begin{gathered} 500 \mathrm{~Hz} \text { to } \\ 1 \mathrm{kHz} \end{gathered}$	$\begin{gathered} 1 \mathrm{to} \\ 5 \mathrm{kHz} \end{gathered}$	$\begin{gathered} 5 \mathrm{to} \\ 10 \mathrm{kHz} \\ \hline \end{gathered}$	$\begin{gathered} 10 \mathrm{to} \\ 30 \mathrm{kHz} \end{gathered}$
0°	90°	1.000	0.00 \%	0.00 \%	0.00 \%	0.10 \%	0.38 \%	1.52\%
10°	80°	0.985	0.03 \%	0.08 \%	0.16 \%	0.86 \%	1.92 \%	4.58 \%
20°	70°	0.940	0.06 \%	0.16 \%	0.32 \%	1.68 \%	3.55 \%	7.84 \%
30°	60°	0.866	0.10 \%	0.25 \%	0.51 \%	2.61 \%	5.41 \%	11.54 \%
40°	50°	0.766	0.15 \%	0.37 \%	0.74 \%	3.76 \%	7.69 \%	16.09 \%
50°	40°	0.643	0.21 \%	0.52 \%	1.04 \%	5.29 \%	10.77 \%	22.21 \%
60°	30°	0.500	0.30 \%	0.76 \%	1.52 \%	7.65 \%	15.48 \%	31.60 \%
70°	20°	0.342	0.48 \%	1.20 \%	2.40 \%	12.08 \%	24.33 \%	49.23 \%
80°	10°	0.174	0.99 \%	2.48 \%	4.95 \%	24.83 \%	49.81 \%	100.00 \%
90°	0°	0.000	--	--	--	--	--	--

To calculate exact ac Watts power adders due to phase uncertainty for values not shown, use the following formula:

$$
\operatorname{Adder}(\%)=100\left(1-\frac{\operatorname{Cos}(\Phi+\Delta \Phi)}{\operatorname{Cos}(\Phi)}\right)
$$

For example: At 60 Hz , for a PF of $.9205(\Phi=23)$ and a phase uncertainty of $\Delta \Phi=0.10$, the ac Watts power adder is:

$$
\operatorname{Adder}(\%)=100\left(1-\frac{\operatorname{Cos}(23+.10)}{\operatorname{Cos}(23)}\right)=0.074 \%
$$

Calculating Power Uncertainty

Overall uncertainty for power output in Watts (or VARs) is based on the root sum square (rss) of the individual uncertainties in percent for the selected voltage, current, and power factor parameters:

Watts uncertainty $U_{\text {power }}=\sqrt{U^{2} \text { voltage }+U^{2} \text { current }+U^{2} \text { PFadder }}$
VARs uncertainty UvaRs $=\sqrt{U^{2} \text { voltage }+U^{2} \text { current }+U^{2} \text { VARsadder }}$
Because there are an infinite number of combinations, you should calculate the actual ac power uncertainty for your selected parameters. The method of calculation is best shown in the following examples (using 1 year specifications):
Example 1 Output: $100 \mathrm{~V}, 1 \mathrm{~A}, 60 \mathrm{~Hz}$, Power Factor $=1.0$ ($\Phi=0$).
VoItage Uncertainty Uncertainty for 100 V at 60 Hz is $190 \mathrm{ppm}+2 \mathrm{mV}$, totaling:
$100 \mathrm{~V} \times 190 \times 10^{-6}=19 \mathrm{mV}$ added to $2 \mathrm{mV}=21 \mathrm{mV}$. Expressed in percent:
$21 \mathrm{mV} / 100 \mathrm{~V} \times 100=\underline{0.021 \%}$ (see "AC Voltage (Sine Wave) Specifications").
Current Uncertainty Uncertainty for 1 A is $0.05 \% .100 \mu \mathrm{~A}$, totaling:
$1 \mathrm{~A} \times 0.0005=500 \mu \mathrm{~A}$ added to $100 \mu \mathrm{~A}=0.6 \mathrm{~mA}$. Expressed in percent:
$0.6 \mathrm{~mA} / 1 \mathrm{~A} \times 100=\underline{0.06 \%}$ (see "AC Current (Sine Waves) Specifications").
PF Adder Watts Adder for $\mathrm{PF}=1(\Phi=0)$ at 60 Hz is $\underline{0 \%}$ (see "Phase Specifications").
Total Watts Output Uncertainty $=\mathrm{U}_{\text {power }}=\sqrt{0.021^{2}+0.06^{2}+0^{2}}=0.064 \%$
Example 2 Output: $100 \mathrm{~V}, 1 \mathrm{~A}, 400 \mathrm{~Hz}$, Power Factor $=0.5(\Phi=60)$
Voltage Uncertainty Uncertainty for 100 V at 400 Hz is, $190 \mathrm{ppm}+2 \mathrm{mV}$, totaling:
$100 \mathrm{~V} \times 190 \times 10^{-6}=19 \mathrm{mV}$ added to $2 \mathrm{mV}=21 \mathrm{mV}$. Expressed in percent:
$21 \mathrm{mV} / 100 \mathrm{~V} \times 100=\underline{0.021 \%}$ (see "AC Voltage (Sine Wave) Specifications").
Current Uncertainty Uncertainty for 1 A is $0.05 \% .100 \mu \mathrm{~A}$, totaling:
$1 \mathrm{~A} \times 0.0005=500 \mu \mathrm{~A}$ added to $100 \mu \mathrm{~A}=0.6 \mathrm{~mA}$. Expressed in percent:
$0.6 \mathrm{~mA} / 1 \mathrm{~A} \times 100=\underline{0.06 \%}$ (see "AC Current (Sine Waves) Specifications").
PF Adder Watts Adder for PF $=0.5(\Phi=60)$ at 400 Hz is 0.76% (see "Phase Specifications").
Total Watts Output Uncertainty $=U_{\text {power }}=\sqrt{0.021^{2}+0.06^{2}+0.76^{2}}=0.76 \%$
VARs When the Power Factor approaches 0.0 , the Watts output uncertainty becomes unrealistic because the dominant characteristic is the VARs (volts-amps-reactive) output. In these cases, calculate the Total VARs Output Uncertainty, as shown in example 3:

Example 3 Output: $100 \mathrm{~V}, 1 \mathrm{~A}, 60 \mathrm{~Hz}$, Power Factor $=0.190$ ($\Phi=80$)
Voltage Uncertainty Uncertainty for 100 V at 60 Hz is, $190 \mathrm{ppm}+2 \mathrm{mV}$, totaling:
$100 \mathrm{~V} \times 190 \times 10^{-6}=19 \mathrm{mV}$ added to $2 \mathrm{mV}=21 \mathrm{mV}$. Expressed in percent:
$21 \mathrm{mV} / 100 \mathrm{~V} \times 100=\underline{0.021 \%}$ (see "AC Voltage (Sine Wave) Specifications").
Current Uncertainty Uncertainty for 1 A is $0.05 \% .100 \mu \mathrm{~A}$, totaling:
$1 \mathrm{~A} \times 0.0005=500 \mu \mathrm{~A}$ added to $100 \mu \mathrm{~A}=0.6 \mathrm{~mA}$. Expressed in percent:
$0.6 \mathrm{~mA} / 1 \mathrm{~A} \times 100=\underline{0.06 \%}$ (see "AC Current (Sine Waves) Specifications").
VARs Adder VARs Adder for $\Phi=80$ at 60 Hz is 0.03% (see "Phase Specifications").
Total VARS Output Uncertainty $=U_{\text {vARs }}=\sqrt{0.021^{2}+0.06^{2}+0.03^{2}}=0.070 \%$

Additional Specifications

The following paragraphs provide additional specifications for the 5522A Calibrator ac voltage and ac current functions. These specifications are valid after allowing a warm-up period of 30 minutes, or twice the time the 5522A has been turned off. All extended range specifications are based on performing the internal zero-cal function at weekly intervals, or when the ambient temperature changes by more than $5^{\circ} \mathrm{C}$.

Frequency

Frequency Range	Resolution	1-Year Absolute Uncertainty, tcal $\pm 5{ }^{\circ} \mathbf{C}$	Jitter
0.01 to 119.99 Hz	0.01 Hz		
120.0 to 1199.9 Hz	0.1 Hz		$2.5 \mathrm{ppm}+5 \mu \mathrm{~Hz}^{[1]}$

[1] With REF CLK set to ext, the frequency uncertainty of the 5522A is the uncertainty of the external 10 MHz clock $\pm 5 \mu \mathrm{~Hz}$. The amplitude of the 10 MHz external reference clock signal should be between 1 V and 5 V p-p.

Harmonics ($2^{\text {nd }}$ to $50^{\text {th }}$)

Fundamental Frequency	Voltages NORMAL Terminals	Currents	Voltages AUX Terminals	Amplitude Uncertainty
10 to 45 Hz	33 mV to 32.9999 V	3.3 mA to 2.99999 A	10 mV to 5 V	Same \% of output as the equivalent single output, but twice the floor adder.
45 to 65 Hz	33 mV to 1020 V	3.3 mA to 20.5 A	10 mV to 5 V	
65 to 500 Hz	33 mV to 1020 V	33 mA to 20.5 A	100 mV to 5 V	
500 Hz to 5 kHz	330 mV to 1020 V	33 mA to 20.5 A	100 mV to 5 V	
5 to 10 kHz	3.3 to 1020 V	$\begin{gathered} 33 \mathrm{to} \\ 329.9999 \mathrm{~mA} \end{gathered}$	100 mV to 5 V	
10 to 30 kHz	3.3 to 1020 V	$\begin{gathered} 33 \mathrm{to} \\ 329.9999 \mathrm{~mA} \\ \hline \end{gathered}$	$\begin{aligned} & 100 \mathrm{mV} \text { to } \\ & 3.29999 \mathrm{~V} \\ & \hline \end{aligned}$	

[1] The maximum frequency of the harmonic output is 30 kHz (10 kHz for 3.3 to 5 V on the Aux terminals). For example, if the fundamental output is 5 kHz , the maximum selection is the 6 th harmonic (30 kHz). All harmonic frequencies (2nd to 50th) are available for fundamental outputs between 10 Hz and 600 Hz (200 Hz for 3.3 to 5 V on the Aux terminals).

Phase Uncertainty
.Phase uncertainty for harmonic outputs is 1 degree or the phase uncertainty shown in "Phase Specifications" for the particular output, whichever is greater. For example, the phase uncertainty of a 400 Hz fundamental output and 10 kHz harmonic output is 5° (from "Phase Specifications"). Another example, the phase uncertainty of a 50 Hz fundamental output and a 400 Hz harmonic output is 1 degree.

Example of determining Amplitude Uncertainty in a Dual Output Harmonic Mode

What are the amplitude uncertainties for the following dual outputs?

NORMAL (Fundamental) Output:
100 V, 100 Hz . \qquad From "AC Voltage (Sine Wave) 90 Day Specifications" the single output specification for $100 \mathrm{~V}, 100 \mathrm{~Hz}$, is $0.015 \%+2 \mathrm{mV}$. For the dual output in this example, the specification is $0.015 \%+4 \mathrm{mV}$ as the 0.015% is the same, and the floor is twice the value ($2 \times 2 \mathrm{mV}$).
AUX (50th Harmonic) Output:
$100 \mathrm{mV}, 5 \mathrm{kHz}$ \qquad .From "AC Voltage (Sine Wave) 90 Day Specifications" the auxiliary output specification for $100 \mathrm{mV}, 5 \mathrm{kHz}$, is $0.15 \%+450 \mathrm{mV}$. For the dual output in this example, the specification is $0.15 \% 900 \mathrm{mV}$ as the 0.15% is the same, and the floor is twice the value ($2 \times 450 \mathrm{mV}$).

AC Voltage (Sine Wave) Extended Bandwidth

Range	Frequency	1-Year Absolute Uncertainty	Max Voltage Resolution
Normal Channel (Single Output Mode)			
1.0 to 33 mV	0.01 to 9.99 Hz	$\pm(5.0 \%$ of output $+0.5 \%$ of range)	Two digits, e.g., 25 mV
34 to 330 mV			Three digits
0.4 to 33 V			Two digits
0.3 to 3.3 V	500.1 kHz to 1 MHz	-10 dB at 1 MHz , typical	Two digits
	1.001 to 2 MHz	-31 dB at 2 MHz , typical	
Auxiliary Output (Dual Output Mode)			
10 to 330 mV	0.01 to 9.99 Hz	$\pm(5.0 \%$ of output$+0.5 \%$ of range $)$	Three digits
0.4 to 5 V			Two digits

AC Voltage (Non-Sine Wave)

Triangle Wave \& Truncated Sine Range, $\mathrm{p}-\mathrm{p}$	Frequency	$\begin{gathered} \text { 1-Year Absolute Uncertainty, } \\ \text { tcal } \pm 5^{\circ} \mathrm{C}, \\ \pm(\% \text { of output }+\% \text { of range })^{[2]} \end{gathered}$	Max Voltage Resolution
Normal Channel (Single Output Mode)			
2.9 to 92.999 mV	0.01 to 10 Hz	$5.0+0.5$	Two digits on each range
	10 to 45 Hz	$0.25+0.5$	Six digits on each range
	45 Hz to 1 kHz	$0.25+0.25$	
	1 to 20 kHz	$0.5+0.25$	
	20 to $100 \mathrm{kHz}^{[3]}$	$5.0+0.5$	
93 to 929.999 mV	0.01 to 10 Hz	$5.0+0.5$	Two digits on each range
	10 to 45 Hz	$0.25+0.5$	Six digits on each range
	45 Hz to 1 kHz	$0.25+0.25$	
	1 to 20 kHz	$0.5+0.25$	
	20 to $100 \mathrm{kHz}^{[3]}$	$5.0+0.5$	
0.93 to 9.29999 V	0.01 to 10 Hz	$5.0+0.5$	Two digits on each range
	10 to 45 Hz	$0.25+0.5$	Six digits on each range
	45 Hz to 1 kHz	$0.25+0.25$	
	1 to 20 kHz	$0.5+0.25$	
	20 to $100 \mathrm{kHz}{ }^{[3]}$	$5.0+0.5$	
9.3 to 93 V	0.01 to 10 Hz	$5.0+0.5$	Two digits on each range
	10 to 45 Hz	$0.25+0.5$	Six digits on each range
	45 Hz to 1 kHz	$0.25+0.25$	
	1 to 20 kHz	$0.5+0.25$	
	20 to $100 \mathrm{kHz}{ }^{[3]}$	$5.0+0.5$	
Auxiliary Output (Dual Output Mode)			
29 to 929.999 mV	0.01 to 10 Hz	$5.0+0.5$	Two digits on each range
	10 to 45 Hz	$0.25+0.5$	Six digits on each range
	45 Hz to 1 kHz	$0.25+0.25$	
	1 to 10 kHz	$5.0+0.5$	
0.93 to 9.29999 V	0.01 to 10 Hz	$5.0+0.5$	Two digits on each range
	10 to 45 Hz	$0.25+0.5$	Six digits on each range
	45 Hz to 1 kHz	$0.25+0.25$	
	1 to 10 kHz	$5.0+0.5$	
9.3 to 14.0000 V	0.01 to 10 Hz	$5.0+0.5$	Two digits on each range
	10 to 45 Hz	$0.25+0.5$	Six digits on each range
	45 Hz to 1 kHz	$0.25+0.25$	
	1 to 10 kHz	$5.0+0.5$	
[1] To convert p-p to rms for triangle wave, multiply the p-p value by 0.2886751 . To convert $p-p$ to rms for truncated sine wave, multiply the p-p value by 0.2165063 .			
[2] Uncertainty is stated in p-p. Amplitude is ve		sing an rms-responding DMM.	
[3] Uncertainty for	ed Sine outputs is ty	er this frequency band.	

AC Voltage (Non-Sine Wave)(cont.)

Square Wave Range ($\mathrm{p}-\mathrm{p}$)	Frequency	$\begin{aligned} & \text { 1-Year Absolute Uncertainty, } \\ & \text { tcal } \pm 5{ }^{\circ} \mathrm{C}, \\ & \pm(\% \text { of output }+\% \text { of range })^{[2]} \end{aligned}$	Max Voltage Resolution	
Normal Channel (Single Output Mode)				
2.9 to 65.999 mV	0.01 to 10 Hz	$5.0+0.5$	Two digits on each range	
	10 to 45 Hz	$0.25+0.5$	Six digits on each range	
	45 Hz to 1 kHz	$0.25+0.25$		
	1 to 20 kHz	$0.5+0.25$		
	20 to 100 kHz	$5.0+0.5$		
66 to 659.999 mV	0.01 to 10 Hz	$5.0+0.5$	Two digits on each range	
	10 to 45 Hz	$0.25+0.5$	Six digits on each range	
	45 Hz to 1 kHz	$0.25+0.25$		
	1 to 20 kHz	$0.5+0.25$		
	20 to 100 kHz	$5.0+0.5$		
0.66 to 6.59999 V	0.01 to 10 Hz	$5.0+0.5$	Two digits on each range	
	10 to 45 Hz	$0.25+0.5$	Six digits on each range	
	45 Hz to 1 kHz	$0.25+0.25$		
	1 to 20 kHz	$0.5+0.25$		
	20 to 100 kHz	$5.0+0.5$		
6.6 to 66.0000 V	0.01 to 10 Hz	$5.0+0.5$	Two digits on each range	
	10 to 45 Hz	$0.25+0.5$	Six digits on each range	
	45 Hz to 1 kHz	$0.25+0.25$		
	1 to 20 kHz	$0.5+0.25$		
	20 to 100 kHz	$5.0+0.5$		
Auxiliary Output (Dual Output Mode)				
29 to 659.999 mV	0.01 to 10 Hz	$5.0+0.5$	Two digits on each range	
	10 to 45 Hz	$0.25+0.5$	Six digits on each range	
	45 Hz to 1 kHz	$0.25+0.25$		
	1 to $10 \mathrm{kHz}{ }^{[3]}$	$5.0+0.5$		
0.66 to 6.59999 V	0.01 to 10 Hz	$5.0+0.5$	Two digits on each range	
	10 to 45 Hz	$0.25+0.5$	Six digits on each range	
	45 Hz to 1 kHz	$0.25+0.25$		
	1 to $10 \mathrm{kHz}^{[3]}$	$5.0+0.5$		
6.6 to 14.0000 V	0.01 to 10 Hz	$5.0+0.5$	Two digits on each range	
	10 to 45 Hz	$0.25+0.5$	Six digits on each range	
	45 Hz to 1 kHz	0.25 + 0.25		
	1 to $10 \mathrm{kHz}{ }^{[3]}$	$5.0+0.5$		
[1] To convert p-p to rms for square wave, multiply the $\mathrm{p}-\mathrm{p}$ value by 0.5 . [2] Uncertainty is stated in p-p. Amplitude is verified using an rms-responding DMM. [3] Limited to 1 kHz for Auxiliary outputs $\geq 6.6 \mathrm{~V}$ p-p.				

AC Voltage, DC Offset

Range ${ }^{[1]}$ (Normal Channel)	Offset Range ${ }^{[2]}$	Max Peak Signal	$\begin{gathered} \hline \text { 1-Year Absolute Uncertainty, } \\ \text { tcal } \pm 5^{\circ}{ }^{\circ}{ }^{[3]} \\ \pm(\% \text { of dc output + floor }) \\ \hline \end{gathered}$
Sine Waves (rms)			
3.3 to 32.999 mV	0 to 50 mV	80 mV	$0.1+33 \mu \mathrm{~V}$
33 to 329.999 mV	0 to 500 mV	800 mV	$0.1+330 \mu \mathrm{~V}$
0.33 to 3.29999 V	0 to 5 V	8 V	$0.1+3300 \mu \mathrm{~V}$
3.3 to 32.9999 V	0 to 50 V	55 V	$0.1+33 \mathrm{mV}$
Triangle Waves and Truncated Sine Waves (p-p)			
9.3 to 92.999 mV	0 to 50 mV	80 mV	$0.1+93 \mu \mathrm{~V}$
93 to 929.999 mV	0 to 500 mV	800 mV	$0.1+930 \mu \mathrm{~V}$
0.93 to 9.29999 V	0 to 5 V	8 V	$0.1+9300 \mu \mathrm{~V}$
9.3 to 93.0000 V	0 to 50 V	55 V	$0.1+93 \mathrm{mV}$
Square Waves (p-p)			
6.6 to 65.999 mV	0 to 50 mV	80 mV	$0.1+66 \mu \mathrm{~V}$
66 to 659.999 mV	0 to 500 mV	800 mV	$0.1+660 \mu \mathrm{~V}$
0.66 to 6.59999 V	0 to 5 V	8 V	$0.1+6600 \mu \mathrm{~V}$
6.6 to 66.0000 V	0 to 50 V	55 V	$0.1+66 \mathrm{mV}$
[1] Offsets are not allowed on ranges above the highest range shown above. [2] The maximum offset value is determined by the difference between the peak value of the selected voltage output and the allowable maximum peak signal. For example, a 10 V p-p square wave output has a peak value of 5 V , allowing a maximum offset up to $\pm 50 \mathrm{~V}$ to not exceed the 55 V maximum peak signal. The maximum offset values shown above are for the minimum outputs in each range. [3] For frequencies 0.01 to 10 Hz , and 500 kHz to 2 MHz , the offset uncertainty is 5% of output, $\pm 1 \%$ of the offset range.			

[^1]AC Voltage, Square Wave Characteristics

Risetime @ $1 \mathbf{k H z}$ Typical	Settling Time @ 1 kHz Typical	Overshoot $1 \mathbf{k H z}$ Typical	Duty Cycle Range	Duty Cycle Uncertainty
$<1 \mu \mathrm{~S}$	$<10 \mathrm{Hs}$ to 1% of final value	$<2 \%$	1% to $99 \%<3.3 \mathrm{~V} \mathrm{p-p}$. $0,01 \mathrm{~Hz}$ to 100 kHz	$\pm(0.02 \%$ of period $+100 \mathrm{~ns}), 50 \%$ duty cycle $\pm(0.05 \%$ of period $+100 \mathrm{~ns})$, other duty cycles from 10% to 90%

AC Voltage, Triangle Wave Characteristics (typical)

Linearity to $\mathbf{1 ~ k H z}$	Aberrations
0.3% of p-p value, from 10% to 90% point	$<1 \%$ of p-p value, with amplitude $>50 \%$ of range

AC Current (Non-Sine Wave)

Triangle Wave \& Truncated Sine Wave Range p-p	Frequency	1-Year Absolute Uncertainty tcal $\pm 5^{\circ} \mathrm{C}$ $\pm(\%$ of output $+\%$ of range)	Max Current Resolution
$\begin{gathered} 0.047 \mathrm{to} \\ 0.92999 \mathrm{~mA}^{[1]} \end{gathered}$	10 to 45 Hz	$0.25+0.5$	Six digits
	45 Hz to 1 kHz	$0.25+0.25$	
	1 to 10 kHz	$10+2$	
$\begin{gathered} 0.93 \text { to } \\ 9.29999 \mathrm{~mA}^{[1]} \end{gathered}$	10 to 45 Hz	$0.25+0.5$	Six digits
	45 Hz to 1 kHz	$0.25+0.25$	
	1 to 10 kHz	$10+2$	
$\begin{gathered} 9.3 \mathrm{to} \\ 92.9999 \mathrm{~mA}{ }^{[1]} \end{gathered}$	10 to 45 Hz	$0.25+0.5$	Six digits
	45 Hz to 1 kHz	$0.25+0.25$	
	1 to 10 kHz	$10+2$	
$\begin{gathered} 93 \mathrm{to} \\ 929.999 \mathrm{~mA}^{[1]} \end{gathered}$	10 to 45 Hz	$0.25+0.5$	Six digits
	45 Hz to 1 kHz	$0.25+0.5$	
	1 to 10 kHz	$10+2$	
$\begin{gathered} 0.93 \text { to } \\ 8.49999 \text { A }^{[2]} \end{gathered}$	10 to 45 Hz	$0.5+1.0$	Six digits
	45 Hz to 1 kHz	$0.5+0.5$	
	1 to 10 kHz	$10+2$	
8.5 to $57 \mathrm{~A}^{[2]}$	45 to 500 Hz	$0.5+0.5$	
	500 Hz to 1 kHz	$1.0+1.0$	
[1] Frequency limited to 1 kHz with LCOMP on. [2] Frequency limited to 440 Hz with LCOMP on.			

AC Current (Non-Sine Wave) (cont.)

Square Wave Range p-p	Frequency	1-Year Absolute Uncertainty tcal $\pm 5^{\circ} \mathrm{C}$ $\pm(\%$ of output $+\%$ of range)	Max Current Resolution
$\begin{gathered} 0.047 \text { to } \\ 0.65999 \mathrm{~mA} \end{gathered}$	10 to 45 Hz	$0.25+0.5$	Six digits
	45 Hz to 1 kHz	$0.25+0.25$	
	1 to 10 kHz	$10+2$	
$\begin{gathered} 0.66 \mathrm{to} \\ 6.59999 \mathrm{~mA} \end{gathered}$	10 to 45 Hz	$0.25+0.5$	Six digits
	45 Hz to 1 kHz	$0.25+0.25$	
	1 to 10 kHz	$10+2$	
$\begin{gathered} 6.6 \text { to } \\ 65.9999 \mathrm{~mA} \end{gathered}$	10 to 45 Hz	$0.25+0.5$	Six digits
	45 Hz to 1 kHz	$0.25+0.25$	
	1 to 10 kHz	$10+2$	
$\begin{gathered} 66 \text { to } \\ 659.999 \mathrm{~mA} \end{gathered}$	10 to 45 Hz	$0.25+0.5$	Six digits
	45 Hz to 1 kHz	$0.25+0.5$	
	1 to 10 kHz	$10+2$	
$\begin{gathered} 0.66 \text { to } \\ 5.99999 \mathrm{~A}^{[2]} \end{gathered}$	10 to 45 Hz	$0.5+1.0$	
	45 Hz to 1 kHz	$0.5+0.5$	
	1 to 10 kHz	$10+2$	
6 to $41 \mathrm{~A}^{[2]}$	45 to 500 Hz	$0.5+0.5$	
	500 Hz to 1 kHz	$1.0+1.0$	
1] Frequency limited to 1 kHz with LCOMP on. 2] Frequency limited to 440 Hz with LCOMP on.			

AC Current, Square Wave Characteristics (typical)

Range	LCOMP	Risetime	Settling Time	Overshoot
I <6 A @ 400 Hz	off	$25 \mu \mathrm{~s}$	$40 \mu \mathrm{~s}$ to 1% of final value	$<10 \%$ for $<1 \mathrm{~V}$ Compliance
$3 \mathrm{~A} \& 20 \mathrm{~A}$ Ranges	on	$100 \mu \mathrm{~s}$	$200 \mu \mathrm{~s}$ to 1% of final value	$<10 \%$ for $<1 \mathrm{~V}$ Compliance

AC Current, Triangle Wave Characteristics (typical)

Linearity to 400 Hz	Aberrations
0.3% of $\mathrm{p}-\mathrm{p}$ value, from 10% to 90% point	$<1 \%$ of $\mathrm{p}-\mathrm{p}$ value, with amplitude $>50 \%$ of range

Fluke Calibration.
Precision, performance, confidence. ${ }^{\text {w }}$

Electrical
-RF
Temperature
Pressure
Flow
Software

Fluke Calibration

PO Box 9090, Everett, WA 98206 U.S.A.
Fluke Europe B.V.
PO Box 1186, 5602 BD
Eindhoven, The Netherlands
For more information call:
In the U.S.A. (877) 355-3225 or
Fax (425) 446-5116
In Europe/M-East/Africa +31 (0) 402675200 or
Fax +31 (0) 402675222
In Canada (800)-36-FLUKE or
Fax (905) 890-6866
From other countries +1 (425) 446-5500 or
Fax +1 (425) 446-51 16
Web access: http://www.flukecal.com
(C)2011 Fluke Calibration.

Specifications subject to change without notice.
Printed in U.S.A. 8/2011 3931295C D-EN-N
Pub-ID 11721-eng
Modification of this document is not permitted without written permission from Fluke Corporation.

[^0]: [1] Resolution is $0.003^{\circ} \mathrm{C}$
 [2] Applies for COMP OFF (to the 5522A Calibrator front panel NORMAL terminals) and 2-wire and 4-wire compensation.
 [3] Based on MINCO Application Aid No. 18

[^1]: 17 Fluke Calibration 5522A Multi-Product Calibrator Extended Specifications

